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SUMMARY 

In this paper we study an extension of Osher’s Riemann solver to mixtures of perfect gases whose equation of 
state is of the form encountered in hypersonic applications. As classically, one needs to compute the 
Riemann invariants of the system to evaluate Osher’s numerical flux. For the case of interest here it is 
impossible in general to derive simple enough expressions which can lead to an efficient calculation of fluxes. 
The key point here is the definition of approximate Riemann invariants to alleviate this difficulty. 

Some of the properties of this new numerical flux are discussed. We give 1D and 2D applications to 
illustrate the robustness and capability of this new solver. We show by numerical examples that the main 
properties of Osher’s solver are preserved in particular, no entropy fix is needed even for hypersonic 
applications. 

KEY WORDS Riemann solver Hypersonic flows 

1. INTRODUCTION 

During the past few years, because of the existence of many transatmospheric vehicle projects 
both in the U.S.A. and Europe, many researchers have been working on the numerical simulation 
of hypersonic flows. 

Among the various methods proposed in the literature, upwind methods have encountered 
great success in the study of transonic and supersonic flows. A very natural wish is to extend them 
for hypersonic purposes. Besides the stiffness of the problem (very strong shock or expansion 
waves develop), new phenomena occur owing to the high level of temperature encountered in 
such gases; chemistry, vibrational relaxation and possibly ionization have to be taken into 
account. All classical Riemann solvers have been derived with the perfect gas law assumption and 
then have to be adapted to real gases. 

Many solutions have been presented to generalize van Leer’s solver’-4 or Roe’s ~ o l v e r ’ . ~ - ~  in 
thermal and chemical equilibrium. More recently, the same work has been done for non- 
equilibrium chemistry and non-equilibrium vibrational relaxation8-’ 

In classical applications one of the most interesting solvers is that of Osher.I2 The principle of 
Osher’s Riemann solver is to solve the Riemann problem by connecting the two states under 
consideration by three subpaths. Each of them consists of a compression or an expansion wave 
and a contact discontinuity, and then one has to average the flux on this multivalued path. We 

0271-2091/92/080935-26$13.00 
0 1992 by John Wiley & Sons, Ltd. 

Received June 1990 
Revised August 1991 



936 R. ABGRALL, L. FEZOUI A N D  J. TALANDIER 

will recall precisely how to build this numerical flux in Section 3.2. Two versions of Osher’s solver 
are used depending on the path chosen in its definition. 

The main properties of this numerical flux are (i) robustness, (ii) smoothness at transition 
points, (iii) satisfaction of an entropy inequality and (iv) stationary and sharp contact discontinu- 
ity and shocks. Property (iii) has been proved at least for one version of the scheme” but shown 
experimentally to be true for the other. This scheme uses information related to the Riemann 
problem. Its utilization for more general cases than that of perfect gases needs further work. 

The extension of this particular Riemann solver was first (to our knowledge) generalized for 
real gases by Abgrall and Montagne,13 then by Dubois14 and very recently by Suresh and Liou.” 
The differences between these versions lie mainly in the method of calculating the ends of the 
connecting paths and the sonic points and how the true paths are approximated. The version 
presented by Abgrall and Montagne is simpler than that of Suresh and Liou and experimentally 
satisfies properties (i)-(iv), but the latter, depending on what computational effort is requested, 
may be more accurate and leads to variations. In Dubois’ version one tries to tabulate the 
Riemann invariants of the problem. 

In the present paper we adopt basically the same approach as that in Reference 13, i.e. we use 
approximate Riemann invariants since the exact ones are generally difficult to handle from a 
numerical point of view. Nevertheless, in this paper the expressions of approximate Riemann 
invariants that are derived are more closely related to the true ones. What are easy to get are 
differential equations satisfied by these Riemann invariants along paths colinear with the 
eigenvectors of the Jacobian matrix of the Euler flux terms. 

From the expression of the Jacobian matrix we first study the behaviour of its eigenvalues. 
Then we describe the Riemann invariants of the system and propose and discuss a method for 
their integration. 

Several test cases, both 1D and 2D are considered in order to study the efficiency and the 
robustness of the method. In particular, we compare our solver to the exact solution of a 1D shock 
tube problem with severe initial conditions. 

2. EQUATION OF STATE, PHYSICAL MODEL, EIGENVALUES AND 
EIGENVECTORS 

2.1. Equation of state 

We consider a mixture of ns perfect gases. The internal energy of a given species is 

ei = pi cvi T+ pi h: + pi etib, 

where T is the translational temperature, h: is the enthalpy of formation of species i at a given 
reference temperature and etib is the specific vibrational of species i (this term disappears for the 
monoatomic species). 

We assume that some of the diatomic species may not be at thermal equilibrium with the 
translational temperature T. Let Ti be the vibrational temperature of species i. We will assume 
that the vibrational energy E$, is related to Ti and pi by 

Bi 4 
E’ .  = p i  =pieti,. 

exp(8J Ti) - 1 vib 

If species i is at thermal equilibrium, Ti= T i n  equation (1). 
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The internal energy E is the sum of each internal energy: 

In equation (2)  nu is the number of diatomic species; they are assumed to be the nu first ones 
among which the nu, first diatomic species are not at thermal equilibrium. Thus in equation (2) 
elib is calculated with Ti = T for i=  nu,  + 1, . . . , nu and with a vibrational temperature different 
from T for the other terms i =  1, ..., nu, .  

The pressure is given by Dalton's law: 

ns 

p =  1 p i ~ , L ~ i T = p ~ V ~ T ,  
i =  1 

(3) 

where 

2.2. Euler equations 

We consider thermal and vibrational non-equilibrium. The independent variables which 
describe the system are the partial densities, momentum pu, total energy e = E +$ pu2 and 
vibrational energies. In 1D they obey the Euler equation with possibly source terms if we consider 
chemistry and vibrational relaxation: 

aw aF 
--+-=Q, 
at ax 

with 

W =  , F(W= , R= (4) 

In this paper our main objective is to derive an extension of Osher's Riemann solver for 
mixtures of perfect gases which may possibly include chemical and vibrational non-equilibrium 
phenomena. Thus we will concentrate on the discretization of the flux terms in equation (4); the 
precise expression of R is of no use now. It is given in Section 4. 
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2.2.1. Jacobian matrix. We immediately get 

0 0 ... 

0 ... 0 

(5 )  

where p z  stands for the partial derivative of p with respect to any conservative variable z = pi 
( i=  1, . . . , ns), pu, E, Etib(i= 1, . . . , nul).  In equation (5) we have set 

Pp,=Xi+KsoU2/2, Ppu= - K s o U ,  P E = % ~ )  PE:,b= - K ~ ~ ~  

with 

In the last expression oi= 1 if species i is diatomic and at  thermal equilibrium, oi=O otherwise. 
It is straightforward to check that the fluxes F are homogeneous of degree one and that the 

matrix a F (  W)/d W is diagonalizable and has real eigenvalues. 

Right eigenvectors. The following matrix R describes its eigenvectors, the lth column of R being 
the lth eigenvector of d F (  W)/a W:  

R= 

1 0 
0 1 

0 0 
U u 

u2 /2 - X 1 /II u2 /2 - X 2  /II 
0 0 

- 0  0 

0 
0 

... 

... 

1 ... 
U ... 

... U2/2-Xns/i 

0 ... 

0 ... 

0 ... 0 Y ,  

0 ... 0 Y2 
. . .  . . .  . . .  

Yl 

yz 

Yns 
u + a  

H + u a  

E,'ib/p 

E::b/p 

In the matrix R the ns+nu, first columns are associated with the eigenvalue A,=u,  the next 
column with l2 = u + a and the last column with I., = u + a, where a is the speed of sound, the 
square of which is 
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Let us notice that the square of the speed of sound can also be written as 

P 
P 

a’ = yso - , (7) 

with y s o = t i s o +  1. It is straightforward to check that the eigenvectors associated with A1 are 
linearly degenerate while those associated with the other eigenvalues are genuinely non-linear. 
More precisely, we have 

(i) for i=1, ..., n s + n u l , V l i . R i = O  
(ii) V ( u - 4 .  Rns+no, + = - ( y s 0  + l ) a / 2 ~  < O  
(iii) V(u +a) RnS+,,, + = ( y s o  + l)a/2p > 0. 

Left eigenuectars. One can easily get the left eigenvectors of the Jacobian matrix: they are 

(i) for i = l ,  ..., ns, 

linear forms whose expressions in term of any vector V =  ( V ,  , . . . , Vns+no, + 2)T are 

n s + n v l + 2  ns 

I = n s + 3  I = 1  I = 1  K,, 

Yi  so li( V)= vi-- 
a’ 

(ii) for i=ns+ 1 ,  . . . , ns+ l+nu,,  
ns + no1 + 2 Eti, ~ s o  l i ( V ) =  vi----- 

P a2 I = n s + 3  

(iii) for i=ns+2+nu1, ns+3+nu1, 

2.2.2. Riemann invariants. Here we intend to derive the differential equations satisfied by the 
Riemann invariants of the PDE system considered now without the source terms (i.e. R = 0): 

= 0, 

where W and F (  W )  have been defined in equations (4). 

eigenvalue 
kernel of d F l a  W-A,Id, 

aw a F ( V  
at ax  -+- 

Let us consider an eigenvalue of a F / d  W, say Ak. A Riemann invariant associated with the 
is a function Qk of W such that for any eigenvector R, which does not belong to the 

Vw Dk. R,  = 0. 

The solutions of these sets of equations can be obtained in the phase space by considering the 
paths s H W(s) such that d W/ds belongs to the eigenvector space associated with the eigenvalue 
k.  

If we use the right eigenvectors defined above, we may see that the Riemann invariants, in the 
problem considered here, are solutions of the following differential equations. 

(i) Eigenvalue 1, = u: 

du 1 dp 
ds -a ds p-+--=o. 
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(ii) Eigenvalue 1, = u + a: 

i = l ,  ..., ns, dPi Yi d~ 
ds a2 ds ’  

du ldp  
ds ads 

p-+-- =o. 

(iii) Eigenvalue A 3  = u - a: 

i = 1, . .. , ns, dpi Yi dp 
ds a2 ds’ 

dyietib YieSibdp . 
z = 1, . .. , nu, ,  

ds a’ ds’ 

We can see that there are two equations for L l  and ns+nu,  + 1 equations each for 1, and ,I3. 

Discussion. These differential equations may be difficult to solve (and in general impossible to 
solve by hand) because yso depends in general on both the temperature and the mass fraction. 
Nevertheless, it is possible to make some general comments. 

1. Case of the linearly degenerate fields: it is obvious from equations (8) that the pressure p and 

2. Case of the genuinely non-linear fields: if one sums up equations (9), one gets 
the velocity u remain constant in a wave associated to A,. 

Since Yi=pi/p, we can deduce that the mass fractions Yi remain constant in sonic waves. 
The same is true for the specific vibrational energy Eii,/p= Yieiib. 

The problem reduces to the integration of equations (19, (1 1) and (14). From the first we obtain 
the invariance of the specific entropy in expansion/compression waves:’ 

where 

and 

w 
mi 

p . = p . -  T 
1 1  
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is the partial pressure of species i. The integrals in equation (16) can be expressed by usual 
functions when one makes the harmonic oscillator assumption as we do in equation (1): 

a$( T)=Ri8, {exp(;$k-l +‘-log T [ exp (:) - 111. 

The integration of equations (1 1)-(14) leads to quadratures that are generally impossible. They 
give 

This last integral cannot be expressed by mean of classical functions even in the simplest case of 
the harmonic oscillator assumption, except in two cases: either nv = 0 (i.e. no vibrational terms) or 
nv=nv, .  

For these reasons we will not try to use the true Riemann invariants in our derivation but will 
use approximate ones that will enable us to compute good approximations of the numerical 
dissipation involved in Osher’s Riemann solver. This is explained in the following section. 

3. AN EXTENSION OF OSHER’S RIEMANN SOLVER 

This section is divided into three parts: first we recall the definition of Osher’s Riemann solver in 
the most general case, then we present an approximation in the case we consider here and lastly 
we comment on some of its properties. 

3.1. Definition of Osher’s Riemann solver 

We will recall some details of the Osher-Solomon” and O~her-Chakravarthy’~ solvers. 
Let us take a hyperbolic partial differential system of equations in conservative form: 

aw aF -+-((=O. 
at ax 

Osher’s approximate Riemann solver is defined by 

where A is the Jacobian matrix of F,  I A I admits the same eigenvectors as A but its eigenvalues are 
the absolute values of those of A and the integral path r connects the two states U and V. 

In References 12 and 17 the path r is always tangent to the right eigenspaces of matrix A and is 
the reunion of three subpaths, r 1 ,  T2 and r3, where Ti is tangent to the eigenspace defined by ,I i .  
Different ways of ordering the eigenvalues of A can be considered. The optimum choices seem to 
be the ‘natural’ order (u - Q, u, u + a) or the ‘reverse’ order (u + a, u, u - a). In Reference 12 it was 
shown that the definition of Osher’s solver combined with the reverse order leads to a numerical 
flux which respects an entropy inequality for the semidiscrete scheme. To our knowledge, nothing 
has been done for the natural order. 

In the following we use the reverse order, but ail of what we say can easily be transposed to the 
other choice of parametrization. 
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3.2. Expression of the numerical flux 

Figure 1) 
One introduces intermediate states which are the ends of paths Tl ,  Tz and r3. They are (see 

U1/3=r2nrl, Uzi3=T3nT, .  

The definition of these intermediate states is made precise in Section 3.4. Since the eigenvectors 
associated with u f a  are genuinely non-linear, the eigenvalues u f a may change their sign at most 
once. These points, if they exist, are called sonic points and are denoted by U1/3 and U , / ,  in the 
paths r2 and r3 respectively. 

~ __ 

(i) Case of the genuinely non-linear vectors: 

=Sign Cni(u)I C F ( U I , ~ ) - F ( U ) I  
~ ~ 

+sign[Ai(Uip)] [ F ( U I , ~ ) - F ( U I / ~ ) ] .  (18) 

The same things can be done along path r3. 
(ii) Case of the linearly degenerate fields: we have shown in Section 2.2.2 that the velocity 

remains constant in a u-wave. Since the fluxes are homogeneous of degree one, we get 

3.3. Approximate Riemann invariants 

The paths are determined using the Riemann invariants since the invariants associated with a 
given wave remain, by definition, constant on that wave. In the perfect gas case, for example, it is 
very easy to determine exact formulae of the Riemann invariants, so the intermediate states are 

UlJ3 r 2  

U V 

Figure 1. Paths and intermediate states 
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trivial to compute numerically. Here this is no longer true for the genuinely non-linear waves and 
the numerical solution to the equations which give the intermediate states would be very costly 
and practically unreachable in general. This is the reason why here we try to obtain approximate 
Riemann invariants which are as consistent as possible with the exact ones. 

To begin with, let us recall the equations the invariants satisfy. 

(i) The mass fractions Yi and the specific vibrational energies Eiib/p for i = 1, . . . ,nu ,  remain 
constant. 

(ii) We have 
_ _ _ _ _  dP 1 dP_O, 
ds a' ds 

du I d p  
ds -a  ds 

p-+--=O.  

On one hand, because of the expression of the speed of sound (6), equation (20) is equivalent to 

We also have, by definition 
ns 

dp = 1 Xidpi + K,,dE. 
i =  1 

Since the mass fractions are constant, equations (21)-(23) lead to 

dE' 

In equation (24) we have set 

On the other hand, because of equation (7), equation (20) leads directly to 

To obtain easily the internal energy and the pressure from equations (24)-(26), one has to make 
two assumptions which we discuss below. 

Assumption I .  yes = 1 + p / $  is approximately constant in an expansion or a compression wave. 
Assumption 2. The same is true for yso.  

Discussion. These assumptions may not be justified from a pure mathematical point of view. 
Nevertheless, in our experience (shock tubes, blunt bodies and nozzles) they are not restrictive. 
Let us notice that yes and yso are in general functions of the temperature T and the mass fractions. 
Since the mass fractions remain constant in an expansion/compression wave, both gammas 
depend only on the temperature. Moreover, if there are no vibrational terms (i.e. nu =nu1 =0) or if 
there are as many vibrational temperatures as diatomic species (i.e. nu = nu,), then both gammas 
are equal and constant. In that case Assumptions 1 and 2 are no longer approximations. 
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In order to check the validity of our assumptions, the numerical experiments we have chosen 
here assume thermal equilibrium and begin with severe initial conditions. In that case the 
dependence of yso and yes is not trivial and there is no particular relation between them, so 
Assumptions 1 and 2 may be very critical. 

Derivation of the approximate Riemann invariants. If both assumptions are made the integra- 
tion of equations (24) and (26) is trivial and leads to 

Equations (27) and (28) are approximations of the isentropic relation. They are obviously 
equivalent in the two extreme situations described above. 

The integration of equation (21) is easy: 

a =constant. 
2 

uf- 
Yso - 1 

The approximate Riemann invariants are summarized in Table I. 

3.4. Determination of the intermediate states 

Here we show how to use these approximate Riemann invariants to get the intermediate states 
u1,3 and u 2 , 3 .  

Table I 

U-U u U S U  

Y !+ = Yi,  i = 1, . . . , ns 

Eti, Y1 . -- i = l ,  ..., nul n s + i + l -  > 
P 

Y ' : = u  yzs+2= Y i , i = l ,  ..., ns 

y ns + nu + 2 - Eti, 
n s + i + l  - , i=l ,  ...) nu, 

P 
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(i) For the wave associated with the eigenvalue u- a: 

(ii) For the wave associated with the eigenvalue u + a: 

(iii) Through the contact discontinuity: 

Then, all the intermediates variables can be expressed by mean of the pressure p=p1/3=p2,3 
and this leads to the equation 

The non-linear equation is first preconditioned and the modified equation is solved by Newton 
iteration. Convergence is generally reached after two or three iterations. This technique has been 
developed in Reference 13 and is recalled later. 

Once this is done, we have the values of the partial densities, velocity and pressure. We need the 
internal energy for computing the fluxes. This can be achieved by means of equation (27). 

The sonic points, if they exist, are obtained with the approximate Riemann invariants as for the 
classical technique. 

Remark. The internal energy and the pressure given by equations (27) and (28)  are not 
generally consistent. The intermediate states U and U2/3 are ‘pseudo’-intermediate states. 

Discussion of equation (30) .  Equation (30) can be written as 

f (  p )  = ap“ + bpa - C ,  (31) 

with suitable constants a, b, c, 01 and 8. The function f is monotone-increasing, concave and 
equation (31) has an unique solution if and only if c 3 0. Equation (31) could be solved by Newton 
iteration, 

but the method can lead to negative values of p if the initial guess p o  is very large, because 
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The idea is to make a change of variable z = x5, where 5 = max(a, j?), and to solve 

B c  
A A '  

g(z)  = 2 +- zq -- 

where 
A =+ [I -sign (ct - P ) ] a  ++ [ I  + sign(j?- cw)]b, 

B=S [l -sign(a-j?)]b++ [l -sign(j?-a)]a, 

The function g is much easier to inverse thanf:  g is monotone-increasing, concave likef, but 
unlike f i ts  derivative is always greater than unity. The convergence of the Newton iterations is 
guaranteed if the initial guess is less than the zero v of 9. 

One can localize v: it lies between the zeros of functionsf, andf, which are defined by 

fl ( P I  = (a + b)p" - c, f 2  ( P I  =(a + - c. 

We will usually start the Newton iteration with the smallest roots offl andf,. Convergence will 
usually be reached within two or three iterations. 

3.5. A property of the numericalflux 

In the kind of gas mixtures we study here we may have linear relations between the mass 
fractions of the various components. For the example of air these relations mean that the 
proportion of the number of moles of oxygen versus that of nitrogen is constant. 

aipi 
and Y2( W ) = x E ,  bipi. We assume that the admissible states lie in the affine space whose 
equation is 

This can be formalized in the following way. We consider two linear forms Y ( W) = 

aY1( W )  = BY2 ( W),  (33) 

where a and j? are constant. 
We now consider the first-order finite volume scheme whose numerical flux is that of Osher: 

w; + = w; - v i  (FY+ l,* - 9-1- (34) 
In equation (34) vi stands for the ratio of the time step and mesh size at node x i .  For the sake of 
clarity the integral part of Osher's flux will be denoted d(  V, v+ 1) or di+  

We have to show that if relation (33) is true at iteration n, then it is true at iteration n + 1. Since 
the forms Yl  and Y, are linear and since we have 

Y l ( F (  W-1))=Y2( Y l ( F (  V ) ) = Y 2 ( V ) u ,  

aY1 (di + 1/2 - 4 - 1/2)  = j?Yz (di+ 1/2 - 4 - 1/2 ). 

where F is the continuous flux and u is the fluid velocity, we only have to show that 

(35) 
In Section 3.2 we have seen that the numerical dissipation d ( V, W;+ is a linear combination of 
the states Wi, Wi+ the pseudostates U1/3, U2/3 and pseudosonic states. The coefficients in these 
linear combinations are independent of the partial densities. The partial densities of the pseudo- 
states are 
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where the terms G, and G, do not depend on the partial densities. It is then obvious that for any I ,  

cry1 (4 + 1,z = BY2 (4 + I,, 1. 
This proves equation (35). 

4, NUMERICAL EXPERIMENTS 

This new solver have been tested on 1D and 2D cases. They are solved with the assumption of 
thermal equilibrium, which is the most unfavourable because of the assumptions we have made in 
Section 3.3; the values of yso and yes  which are used in the derivation of the approximate Riemann 
invariants depend explicitly on the vibrational energies of all diatomic molecules. If the approx- 
imations we make are not too well justified, we believe that we would not be able to run severe test 
cases, as we will show in this section. Calculations using different thermodynamics assumptions 
have also been done and are reported elsewhere.'* 

The scheme is based on a finite volume formulation. It is explicit for the convective terms and 
implicit for the source terms introduced by the dissociation-relaxation processes and the 
vibrational relaxation. The calculation uses the classical MUSCL method" in the 1D cases. The 
bidimensional calculations are done by using a finite element/finite volume/first-order approx- 
imation (see Reference 20 for details). 

We have used the property of conservation of the proportion of species to reduce the size of the 
linear systems to solve at each time.step. For example, in 1D applications the original system is of 
size five. Since we have two linear combination of species, this implies the same relation for the 
source term. Thus the effective system to solve is only 3 x 3. The same idea is applied in the case of 
vibrational relaxation. 

4.1. Chemical model 

In the following we assume a mixture of the five main species which compose air: 0, N, NO, 0, 
and N,; the relative proportion of oxygen versus that of nitrogen is 21/79. Vibrational equilib- 
rium is assumed. 

The dissociation and recombination model is that of Park,,' in which we retain the 17 chemical 
reactions which involve 0, N, NO, 0, and N,. 

4.2. ID test cases 

We have run this new solver on numerous cases (e.g. those taken from Reference 22). We have 
chosen to report the results we have obtained on the one which seems to be the most difficult. It is 
taken from References 11 and 15 and is defined as follows: 

(i) Left: p =  100 atm, T=9000 K and u =O. 
(ii) Right: p = 1 atm, T= 300 K and u = 0. 

This corresponds to the mass distribution given in Table 11. 
There is a large jump in pressure and temperature: the compositions of the mixture are 

completely different and so are the Vibrational parts of the internal energy. This difficult test case 
has been chosen in order to test the assumptions made in Section 3.3. The calculations are of 
second-order spatial accuracy and use the limitation procedure on the characteristic variables. 

Frozen case. As a first experience we intend to test this solver without any chemistry source 
terms. The calculations have been performed with a CFL number of 095  and use 101 points. The 
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Table I1 

T P YO YN YO, 

9000 2.532 0,220 0.314 2.3 x lo-’ 7.36 x 0.442 
300 1.156 0 0 0 0.233 0.767 

1 . 5  I I 1 I 

+ 
1 , 4 5  + 

+ 
1.4 - 

+ 

+ o  1 . 3 5  
0 + 
0 

++++t+ 
1 . 3  0 

1 . 2 5  0 

1 . 2  
0 

1 . 1 5  

1 1 1  1 I I -.- 
0 0.2 0.4 0.6  0.8 I 

Figure 2. Equivalent and sonic gamma, frozen case 

results are compared with the exact solution obtained by Colella and Glaz’s method23 adapted to 
the present situation. One can see that, despite the resolution, the agreement is excellent. 

In Figure 2 we have plotted the two gammas which are used in the computation of the 
intermediate states. If non-equilibrium vibrational effects were present, the two gammas would be 
equal and the approximate Osher solver would be an exact one. We can see that their behaviour is 
different: the sonic gamma is constant in the expansion wave while the equivalent gamma 
(1 +PIE’) is not. 

In Figure 3 one can see the mass fraction distributions. They are constant except at the contact 
discontinuity (x N 0.79, as should be the case. 

In Figures 4-8, where we have displayed the Mach number, pressure, density, temperature and 
velocity, we can see a small overshoot (or undershoot) at the end of the expansion wave. Even in 
the perfect gas case one can see this default because of the strength of the expansion wave. We 
insist that it is neither a consequence of the approximation we have made here nor a consequence 
of the second-order extension of the scheme. 

The pressure and velocity remain constant at the contact discontinuity (Figures 4 and 5). 
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Figure 3. Mass fraction distribution, frozen case 
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Figure 5. Pressure, Frozen case, --- exact, 0 0 present solver 
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Figure 7. Density, frozen case, --- exact, 0 0 present solver 
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Figure 9. Pressure, frozen case, --- exact, 0 0 Roe’s solver 
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Comparison with an extension of Roe’s Riemann solver. The Mach number and pressure are 
given in Figures 9 and 10. These results are obtained by the same scheme with the extension of 
Roe’s Riemann solver derived for thermal equilibrium flows6 instead of the present version of 
Osher’s solver. As we can see, the results are nearly the same. However, we must notice that the 
Roe calculations need an entropy If this correction is not used, the computation diverges 
irrespective of the CFL number. This demonstrates the robustness of the algorithm. 

Test with chemistry source terms. In Figures 11-17 we have plotted the same variables as 
previously but with Park’s model as chemistry source term. As we can see, the addition of 
chemical source terms does not alter the quality of the results. The methodology can easily handle 
more complicated situations. Here the calculations use 201 grid points in order to compare with 
References 1 1  and 15. The agreement with the former reference is good. 
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Figure 11 .  Velocity, non-equilibrium case 
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Figure 12. Pressure, non-equilibrium case 
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Figure 13. Temperature, non-equilibrium case 
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Figure 14. Mach number, non-equilibrium case 

On the mass fraction (Figure 15) and temperature (Figure 13) plots we can see the differences 
between the non-chemistry calculations and this one. We notice a production of NO at the 
contact discontinuity. This explains the small wiggles in the velocity (Figure 11) and pressure 
(Figure 12) at this location: the ratios of specific heats of different species are different (1.4 or 1.66); 
at the contact discontinuity the dominant species are N,, 0, 0, and NO. Since the numerical 
thickness of this discontinuity is not zero, this induces wiggles on the pressure and then on the 
velocitv. This phenomenon would also be present if we had an exact solver at our d i ~ p o s a l . ~ ~ ~ ~ ~  
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Figure 16. Equivalent and sonic gamma, non-equilibrium case 

4.3. 2 0  test case 

We have tested our solver on a test case defined for the Workshop on Hypersonic Flows for 
Reentry Problems held in Antibes, France in January 1990.27 

The calculation is done on a double ellipse with a semi-axis of 60cm. The conditions are 
defined at 1 5  km height and are 

(i) pressure P = 252 Pa 
(ii) temperature T =  204.3 K 
(iii) density 04276 x kgrnp3. 
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Figure 18. Iso-Mach lines, min =0, max=25, dM =0.25 



k 
Figure 19. Temperature lines, min = 203 K, max = 15929 K dT= 500 K 

Figure 20. Pressure coefficient, min = - 1.88, max = 0 dc, = 0.1 
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Figure 21. Convergence history, log,, of Lz norm of the density 

We assume thermal equilibrium. The calculation is done at Am = 25 and the angle of incidence is 
30". Some results are displayed in Figures 18-21. They include Mach number, temperature and 
pressure coefficient lines. The results compare very well with those obtained, for example, by 
Botta et ~ 1 . ~ ~  The convergence history of the calculation is given in Figure 21. From it, one can see 
that the convergence is very smooth. No particular trick has been used: the initial state is the 
uniform field at infinity and the computation was driven directly without gradually increasing the 
angle of incidence form 00 to 30". At the beginning of the run the CFL number is set equal to 0 5  
until the very-low-pressure areas just in front of the canopy and above the shuttle, caused by the 
severe initialization conditions we have taken, have disappeared; then the CFL number is set 
to 0.8. 

5. CONCLUSIONS 

We have presented here an extension of Osher's Riemann solver. The numerical tests we have 
performed show the robustness of this new solver. They also show that the properties of the Osher 
splitting (smoothness and physical shocks) are valid despite the assumptions we have made. In 
particular, no entropy fix is needed to capture shocks. The same techniques can also be used for 
more complex situations, e.g. ionized gas flows. 

In conclusion, this extension gives satisfactory results in the applications. The accuracy of the 
spatial approximation may be extended to second-order in the 2D case. The convergence to 
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steady state may be accelerated by using an implicit &scheme for example. These two points are 
currently under study. 
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APPENDIX: NOTATIONS 

universal constant of perfect gases 
molar weight of species i 
&?/mi 
specific heats of species i 
CBi/CVi 
y i  - 1 
temperature of flow 
density of species i 
total density, p =I: pi 
mass fraction of species i, Yi  = p i / p  
enthalpy of formation of species i 
typical value of vibrational temperature of molecules of species i 
pressure 
velocity 
momentum, m = p u  
total energy per unit volume 
specific energy per unit mass 
specific vibrational energy of species i 
vibrational energy of species i, Eti, = pi etib 
specific enthalpy, H = (e + p ) / p  
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